• gn0417 200
    № 4 (28), 2017 г.
  • en1217 200
    № 11-12 (99-100) Ноябрь-Декабрь 2017
  • tn1217 200
    № 12 (133) Декабрь 2017
  • reg0617 200
    № 6 (56) Ноябрь-Декабрь 2017
  • en1017 200
    № 9-10 (97-98) Сентябрь-Октябрь 2017
  • tn1117
    № 11 (132) Ноябрь 2017
  • reg0517 200
    № 5 (55) Сентябрь-Октябрь 2017
  • tn1017 200
    № 10 (131) Октябрь 2017
  • gn0317 small
    № 3 (27), 2017 г.
  • tn0917 200
    № 9 (130) Сентябрь 2017
  • reg0417 200
    № 4 (54) Июль-Август 2017
  • tn0817 200
    № 8 (129), Август 2017
  • en0817 200
    № 7-8 (95-96) Июль-Август 2017
  • gn0217 small
    № 2 (26), 2017 г.
  • tn0717 200
    № 7 (128), Июль 2017
  • en0517 200
    № 5-6 (93-94), Декабрь 2016

ITECWRAP® CFRP технология «невидимого» усиления несущих конструкций (фундаментов, плит, стен, колонн) композиционными материалами

4     Деревянные, кирпичные, каменные, металлические и железобетонные несущих конструкций часто подвержены коррозионными и ненормативным процессам . Усиление углеволокном — одна из проверенных временем технологий в сфере ремонта строительных сооружений, для восстановления несущей способности и усиления конструкций . В этой, поистине революционной, разработке собраны воедино антикоррозионные меры, гидроизоляция конструкций и восстановление прочности строительных материалов. Технология практически не имеет достойной альтернативы при необходимости усиления несущих конструкций, вызванной изменением функционального назначения сооружений, реконструкцией или значительной потерей несущей способности в ходе эксплуатации. Высокопрочные системы усиления (ВСУ) позволяют даже повысить прочность конструкции почти в 2 раза от нормативной.

Углеродное волокно (ровинг)

Материал, состоящий из тонких нитей диаметром от 3 до 15 микрон, образованных преимущественно атомами углерода. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью. При этом удельный вес углеродных волокон не превышает 2 г/см3, что позволяет получать конструкции вдвое легче алюминиевых и впятеро легче стальных.

ВСУ композиты

Многосложные структуры, образованные комбинацией углеродных волокон как армирующих элементов и связующего (матрицы). Механические и другие свойства композита определяются тремя основными параметрами: высокой прочностью углеродного волокна, жесткостью матрицы и прочностью связи на границе матрица–волокно. Композиты с полимерной матрицей – углепластики. В результате упруго-прочностные характеристики композитов на их основе значительно превышают аналогичные показатели алюминия и стали.

Стойкость в условиях агрессивной химической среды

Применяемые в ВСУ углеродные и арамидные волокна способны противостоять воздействию щелочей, кислот, хлоридов, сульфатов, нитратов и др. химически активных веществ. В зависимости от конкретных условий применяется тот или иной вид волокон.

Экологичность

Применяемые в ВСУ композитные материалы совершенно безвредны для человека и окружающей среды в нормальных условиях эксплуатации. Они инертны и не имеют в своем составе токсических веществ и вредных примесей. Они не загрязняют атмосферу и не наносят вреда при попадании в почву.

ВСУ в зонах сжатия

Прочность композиционных материалов на сжатие ниже, чем на растяжение. Так, причинами разрыва волокон при нагрузках на сжатие могут стать поперечное растяжение, срез, микро-изгиб волокон в поперечном направлении. И хотя для углеродных волокон, например, степень снижения прочности не слишком велика, использовать ВСУ в зонах сжатия не стоит, так как эта область применения исследована недостаточно.

ВСУ и электропроводимость

ВСУ на основе арамидных и стекловолокон хорошие диэлектрики и могут применяться в качестве защиты инженерных коммуникаций и линий электропередач. Углеродные волокна, проводят электричество, но при условии изолированности от стальной арматуры, ВСУ на их основе можно применять для усиления   конструкций, имеющих косвенное отношение к воздействию электричества, например, мостов с движением электротранспорта.

Стойкость при воздействии температуры

Коэффициенты линейной деформации под влиянием температуры для применяемых в ВСУ волокон различны. Углеродное и стекловолокно почти не подвержены деформациям при изменениях температуры. Результаты проведенных испытаний показывают, что в целом, в диапазоне от -28 °С до + 28 °С, температурным воздействием можно пренебречь.

Противодействие ударной волне

Применение ВСУ не только повышает прочность строительных конструкций, но и существенно увеличивает их упругость и вязкость. А это, в свою очередь, помогает избежать обрушения зданий и сооружений в результате террористических актов, техногенных и природных катастроф (взрывов на огнеопасных производствах, взрывов бытового газа, пожаров, землетрясений, метеоритных дождей).

Противодействие огню

Углеволокно начинает окисляться в воздушной среде при 275 °С. Арамидные волокна выдерживают 200 °С. Все они не поддерживают процесс горения, а прочность на растяжение снижается при температуре около 250 °С на 20 %.

Способность выдерживать ударные нагрузки

При воздействии ударной силы волокна способны принимать на себя значительное количество энергии, благодаря сочетанию высокой прочности на растяжение и значительного относительного удлинения.

ВСУ и реологические свойства 

Все композиционные материалы обладают различной степенью ползучести, особенно при длительной эксплуатации в неблагоприятных условиях. Это со временем приводит к снижению прочности на растяжение. Данные испытаний показали, что углеродные волокна почти не подвержены ползучести, далее идут арамидные и стекловолокна. При расчете ВСУ для конкретных объектов этот фактор учитывается, равно, как и условия их эксплуатации.

Возможность проведения работ при минусовых температурах

Использование в ВСУ углеродных волокон позволяет производить работы даже при минусовых температурах. Для того, чтобы повысить температуру адгезива, на полотно подают напряжение и разогревают его до 70 °С. Это позволяет не только правильно выполнить технологический процесс, но и увеличить температуру стеклования клеящего состава и выиграть время. При необходимости разогреть зону усиления можно и другими способами. Кроме того, существуют специальные клеевые составы для работы при отрицательных температурах.

Происшествия, административная практика

news101017-3

Нарушение правил промышленной безопасности стало причиной пожара на НПЗ

Октябрь 10, 2017
5 октября на территории товарно-сырьевого производства ООО «ЛУКОЙЛ-Нижегороднефтеоргсинтез» в ходе ремонтных работ на бензиновом резервуаре, проводимых подрядными организациями, произошло возгорание. Пожар ликвидировали более 200 человек и 50 единиц техники, площадь возгорания составила 900 кв. м. В результате ЧП погибли четыре работника подрядной компании ООО…

Выставки  

sape2018 100х100     100x100 ndt     100x100 ekoteh2017     vuzpromexpo 100x100     100x100 HP17     100х100 svarka2017   

NDT17 100х100 VIS     khim17 100x100     100x100 nec8

Партнеры